ONE- and TWO-Equation Models for Canopy Turbulence
نویسندگان
چکیده
منابع مشابه
Fisher equation with turbulence in one dimension
We investigate the dynamics of the Fisher equation for the spreading of micro-organisms in one dimenison subject to both turbulent convection and diffusion. We show that for strong enough turbulence, bacteria , for example, track in a quasilocalized fashion (with remakably long persistance times) sinks in the turbulent field. An important consequence is a large reduction in the carrying capacit...
متن کاملNumerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow
In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...
متن کاملThe length scale equation in turbulence models
The question of which length scale equation to use in models of turbulence has long been controversial and several approaches have been suggested and used in the past. In this paper, we demonstrate that all these approaches are equivalent and the inconsistencies in the use of some of these approaches arise from improper modeling of the diffusion term in the length scale equation. We formulate a...
متن کاملRobust Multigrid Solution of Rans Equations with Two-equation Turbulence Models
The design of a new, truly robust multigrid framework for the solution of steady-state Reynolds-averaged Navier-Stokes (RANS) equations with two-equation turbulence models is presented. While the mean-flow equations and the turbulence model equations are advanced in time in a loosely-coupled manner, their multigrid cycling is strongly coupled (FC-MG). Thanks to the loosely-coupled approach, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary-Layer Meteorology
سال: 2004
ISSN: 0006-8314,1573-1472
DOI: 10.1023/b:boun.0000037333.48760.e5